Answer:
Explanation:
Given
Equation of Planet orbit
[tex]3x^2+4y^2=20---1[/tex]
also [tex]v_y=10\ unit/s[/tex]
when [tex]y=2\ unit[/tex]
Substitute the value of y in 1
[tex]3x^2+4(2)^2=20[/tex]
[tex]x^2=\frac{4}{3}[/tex]
[tex]x=\frac{2}{\sqrt{3}}[/tex]
differentiate 1 to get velocity in x direction
[tex]3\times 2\times x\cdot \frac{\mathrm{d} x}{\mathrm{d} t}+4\times 2\times y\cdot \frac{\mathrm{d} y}{\mathrm{d} t}=0[/tex]
[tex]\frac{\mathrm{d} x}{\mathrm{d} t}=v_x[/tex]
[tex]\frac{\mathrm{d} y}{\mathrm{d} t}=v_y[/tex]
[tex]v_x=-\frac{4}{3}\times \frac{y}{x}\times v_y[/tex]
[tex]v_x=-\frac{4}{3}\times \frac{2\sqrt{3}}{2}\times 10[/tex]
[tex]v_x=-23.094\ unit/s[/tex]