Answer:
3751.80514 radians
Explanation:
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_i[/tex] = Initial angular velocity
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Angle of rotation
t = Time taken
[tex]\theta=\omega_it+\dfrac{1}{2}\alpha t^2\\\Rightarrow \theta=188\times 15.6+\dfrac{1}{2}\times 0\times 15.6^2\\\Rightarrow \theta=2932.8\ rad[/tex]
The angular displacement would be 2932.8 rad
[tex]\theta=\omega_it+\dfrac{1}{2}\alpha t^2\\\Rightarrow \theta=293\times 15.6+\dfrac{1}{2}\times 0\times 15.6^2\\\Rightarrow \theta=4570.8\ rad[/tex]
The angular displacement would be 4570.8 rad
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\dfrac{293-188}{15.6}\\\Rightarrow \alpha=6.73076\ rad/s^2[/tex]
[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\dfrac{\omega_f^2-\omega_i^2}{2\alpha}\\\Rightarrow \theta=\dfrac{293^2-188^2}{2\times 6.73076}\\\Rightarrow \theta=3751.80514\ rad[/tex]
Actual value of the angular displacement is 3751.80514 radians