Answer:
[tex]y=-0.18 x+10.06[/tex]
Step-by-step explanation:
The nine coordinates are [tex](0,10)[/tex], [tex](1,9.9)[/tex], [tex](2,9.6),(3,9.5), (4,9.4), (5,9.2), (6,9), (7,8.7), (8,8.6)[/tex]
To find the line that best fit the data is to substitute the values in this equation [tex]y=a x+b[/tex] where [tex]a=\frac{\left(N * \sum x y\right)-\left(\sum x * \sum y\right)}{\left(N * \sum x^{2}\right)-\left(\sum x * \sum x\right)}[/tex] and [tex]b=\frac{\left(\sum x^{2} * \Sigma y\right)-\left(\sum x * \Sigma x y\right)}{\left(N * \Sigma x^{2}\right)-\left(\sum x * \Sigma x\right)}[/tex]
Using the values from the table attached below, we can substitute and find the values of a and b
Substituting the values of a, we get,
[tex]\begin{aligned}a &=\frac{\left(N * \sum x y\right)-\left(\sum x * \Sigma y\right)}{\left(N * \sum x^{2}\right)-\left(\sum x * \sum x\right)} \\&=\frac{(9 * 324.9)-(36 * 83.9)}{(9 * 204)-(36 * 36)} \\&=-0.18\end{aligned}[/tex]
Similarly, substituting the values of b, we get,
[tex]\begin{aligned}b &=\frac{\left(\sum x^{2} * \Sigma y\right)-\left(\sum x * \sum x y\right)}{\left(N * \sum x^{2}\right)-\left(\sum x * \sum x\right)} \\&=\frac{(204 * 83.9)-(36 * 315)}{(9 * 204)-(36 * 36)} \\&=10.06\end{aligned}[/tex]
Thus, substituting the values of a and b in the formula, we get,
[tex]\begin{aligned}y &=a x+b \\&=-0.18 x+10.06\end{aligned}[/tex]