Answer:
The answer to your question is the last option (x + 6)² = 13
Step-by-step explanation:
Data
x² + 12x + 23 = 0
Process
1.- Subtract 23 in both sides
x² + 12x + 23 - 23 = -23
2.- Simplify
x² + 12x + ( ) = - 23
3.- Complete the perfect square trinomial
x² + 12x + (6)² = -23 + (6)²
4.- Factor
(x + 6)² = -23 + (6)²
5.- Simplify
(x + 6)² = -23 + 36
6.- Result
(x + 6)² = 13