Answer:
0.00915 M of [tex]I_2[/tex] remain after 5.16 seconds.
Explanation:
Using integrated rate law for first order kinetics as:
[tex][A_t]=[A_0]e^{-kt}[/tex]
Where,
[tex][A_t][/tex] is the concentration at time t
[tex][A_0][/tex] is the initial concentration
Given that:
The rate constant, k = [tex]0.344[/tex] s⁻¹
Initial concentration [tex][A_0][/tex] = 0.054 M
Final concentration [tex][A_t][/tex] = ? M
Time = 5.16 s
Applying in the above equation, we get that:-
[tex][A_t]=0.054e^{-0.344\times 5.16}\ M=\frac{1\times \:0.054}{e^{1.77504}}\ M=0.00915\ M[/tex]
0.00915 M of [tex]I_2[/tex] remain after 5.16 seconds.