Respuesta :

The coordinate of B is (3, 7).

Solution:

Given data: A(0, 6), D(18, 12) and AB : BD = 1 : 5

A(0, 6) can be taken as [tex]A(x_1, y_1)[/tex].

D(18, 12) can be taken as [tex]B(x_2, y_2)[/tex].

AB : BD can be taken as m : n = 1 : 5.

We know that coordinate of point P(x, y) divides line segment joining

[tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] in ratio m : n is

[tex](x,y)=(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n})[/tex]

Here, [tex]x_1=0, x_2=18, y_1=6, y_2=12[/tex] and m = 1, n = 5.

Substitute these in the above formula, we get

[tex]B(x,y)=(\frac{1(18)+5(0)}{1+5}, \frac{1(12)+5(6)}{1+5})[/tex]

⇒ [tex]B(x,y)=(\frac{18+0}{6}, \frac{12+30)}{6})[/tex]

⇒ [tex]B(x,y)=(\frac{18}{6}, \frac{42}{6})[/tex]

⇒ B(x, y) = (3, 7)

Hence the coordinates of point B are (3, 7).

ACCESS MORE