A long thin rod of mass M and length L is situated along the y axis with one end at the origin. A small spherical mass m1 is placed at the location P, which is at a distance d from the origin.

If L = 2.00 ? 104 m, d = 18.0 ? 104 m,M = 14.0 ? 106 kg,and m1 = 8.00 ? 106 kg,what is the value of this potential energy?

Respuesta :

Answer:

[tex]= - 5.65\times 10^{-2} J[/tex]

Explanation:

Given data:

L =2.00 *10^4 m

d = 18*10^4 m

M = 18  *10^6 kg

m_1 = 8*10^6 kg

Gravitational energy is given as

[tex]U =- G \frac{m_1 m_2}{r}[/tex]

mass per unit length is given as

[tex]\sigma = \frac{M}{L} = \frac{18 \times 10^6}{2\times 10^4 m} = 900 kg/m[/tex]

calculating potential energy

[tex]dU ==-G\int_{16\times 10^4}^{18\times 10^4} \frac{m_1 *dm}{r}[/tex]

[tex]=-G\int_{16\times 10^4}^{18\times 10^4} \frac{m_1 *\sigma dr}{r}[/tex]

[tex]=-G*m_1*\sigma\int_{16\times 10^4}^{18\times 10^4} \frac{dr}{r}[/tex]

[tex]=-G*m_1*\sigma \left | ln r \right |_{16\times 10^4}^{18\times 10^4}[/tex]

[tex]=-G*m_1*\sigma ln(1.125)[/tex]

[tex]=-6.673 \times 10^{-11}*8*10^6*900*ln(1.125)[/tex]

[tex]= - 5.65\times 10^{-2} J[/tex]

ACCESS MORE