Answer:
[tex]= - 5.65\times 10^{-2} J[/tex]
Explanation:
Given data:
L =2.00 *10^4 m
d = 18*10^4 m
M = 18 *10^6 kg
m_1 = 8*10^6 kg
Gravitational energy is given as
[tex]U =- G \frac{m_1 m_2}{r}[/tex]
mass per unit length is given as
[tex]\sigma = \frac{M}{L} = \frac{18 \times 10^6}{2\times 10^4 m} = 900 kg/m[/tex]
calculating potential energy
[tex]dU ==-G\int_{16\times 10^4}^{18\times 10^4} \frac{m_1 *dm}{r}[/tex]
[tex]=-G\int_{16\times 10^4}^{18\times 10^4} \frac{m_1 *\sigma dr}{r}[/tex]
[tex]=-G*m_1*\sigma\int_{16\times 10^4}^{18\times 10^4} \frac{dr}{r}[/tex]
[tex]=-G*m_1*\sigma \left | ln r \right |_{16\times 10^4}^{18\times 10^4}[/tex]
[tex]=-G*m_1*\sigma ln(1.125)[/tex]
[tex]=-6.673 \times 10^{-11}*8*10^6*900*ln(1.125)[/tex]
[tex]= - 5.65\times 10^{-2} J[/tex]