Respuesta :
In this exercise we have to use the knowledge of thermodynamics to calculate the functions that best correspond to temperature, in this way we find that
a)[tex]\frac{dT}{dt}=-(0.4)(T-66)[/tex]
b) [tex]\frac{dT}{dt}=-(0.4)(T-(66)cos(\pi t/30))[/tex]
c) [tex]\frac{dT}{dt}=(24)(T-(66)cos(\pi t /1800))[/tex]
d) [tex]T_A=(24)(T-(150.8)cos(\pi t /1800)[/tex]
a) According the Newton's law of cooling the rate of the heat loss from a body is directly proportional to the temperature difference between the body and the surounnding. Therefore,
[tex]\frac{dT}{dt} = k(T-T_A)[/tex]
Here, K is the proportionality constant. Thus,:
[tex]\frac{dT}{dt}=k(T-T_A)\\=-(0.4)(T-66)[/tex]
b) The ambient temperature is:
[tex]T_A=(66)cos(\pi t/30)[/tex]
Substitute, the value of the ambient temperature in the equation:
[tex]\frac{dT}{dt}=-(0.4)(T-(66)cos(\pi t/30))[/tex]
c) For the time in hours,
[tex]K=24 hr^{-1[/tex]
Therefore,
[tex]\frac{dT}{dt}=-(24)(T-(66)cos(\pi/1800)\\=(24)(T-(66)cos(\pi t /1800))[/tex]
d) The conversion formula for degree Celsius and the fahrenheit is:
[tex]F=9/5C+32[/tex]
Therefore,
[tex]T_A=(66(9/5)+32)cos(\pi t/30)\\=(150.8)cos(\pi t /30)\\=(24)(T-(150.8)cos(\pi t /1800)[/tex]
See more about Temperature at brainly.com/question/15267055