Answer:
52.73978 m
Explanation:
[tex]v_x[/tex] = 15 m/s
[tex]\theta[/tex] = 65°
The x component will remain the same. So, we can use the relation
[tex]tan\theta=\dfrac{v_y}{v_x}\\\Rightarrow v_y=v_xtan\theta\\\Rightarrow v_y=15\times tan65\\\Rightarrow v_y=32.1676\ m/s[/tex]
From the following equation
[tex]v_y^2=u_y^2+2as\\\Rightarrow s=\dfrac{v_y^2-u_y^2}{2a}\\\Rightarrow s=\dfrac{32.1676^2-0^2}{2\times 9.81}\\\Rightarrow s=52.73978\ m[/tex]
The height above the ground is 52.73978 m