Respuesta :

Answer:

Option 3 is correct.

[tex]V_{s}=23976\ cubic\ feet[/tex]

Step-by-step explanation:

Given:

The dimension of the large box.

Length = 40 ft,width = 24, height = 18

The dimension of the smaller box.

Box 1 ⇒ Length = 30 ft, width = 18 ft, height = 6 ft

Box 2 ⇒ Length = 30 ft, width = 12 ft height = 6 ft

Box 3 ⇒ Length = 18 ft, width = 12 ft, height = 6 ft

We need to find the volume of the solid.

Solution:

First we find the volume of the all boxes by using below formula.

[tex]Volume = Length\times width\times height[/tex]

Volume of the large box.

[tex]Volume = Length\times width\times height[/tex]

So, the volume of the large box.

[tex]V_{lb} = 40\times 24\times 18[/tex]

[tex]V_{lb} = 17280\ cubic\ feet[/tex]

Volume of the smaller box(box 1).

[tex]Volume = Length\times width\times height[/tex]

So, the volume of the large box.

[tex]V_{b1} = 30\times 18\times 6[/tex]

[tex]V_{b1} = 3240\ cubic\ feet[/tex]

Volume of the smaller box(box 2).

[tex]Volume = Length\times width\times height[/tex]

So, the volume of the large box.

[tex]V_{b2} = 30\times 12\times 6[/tex]

[tex]V_{b2} = 2160\ cubic\ feet[/tex]

Volume of the smaller box(box 3).

[tex]Volume = Length\times width\times height[/tex]

So, the volume of the large box.

[tex]V_{b3}= 18\times 12\times 6[/tex]

[tex]V_{b3}= 1296\ cubic\ feet[/tex]

We know that the volume of the solid is equal to sum of the all boxes.

Volume of the solid

[tex]V_{s} = V_{lb}+V_{b1}+V_{b2}+V_{b3}[/tex]

[tex]V_{s} = 17280+3240+2160+1296[/tex]

[tex]V_{s}=23976\ cubic\ feet[/tex]

Therefore, the volume of the solid [tex]V_{s}=23976\ cubic\ feet[/tex]

ACCESS MORE