NEED HELP ON THIS ASAP
![NEED HELP ON THIS ASAP class=](https://us-static.z-dn.net/files/d5b/90e5c4133a6babe4337bf4ea2c108fbd.png)
Answer:
Option 3 is correct.
[tex]V_{s}=23976\ cubic\ feet[/tex]
Step-by-step explanation:
Given:
The dimension of the large box.
Length = 40 ft,width = 24, height = 18
The dimension of the smaller box.
Box 1 ⇒ Length = 30 ft, width = 18 ft, height = 6 ft
Box 2 ⇒ Length = 30 ft, width = 12 ft height = 6 ft
Box 3 ⇒ Length = 18 ft, width = 12 ft, height = 6 ft
We need to find the volume of the solid.
Solution:
First we find the volume of the all boxes by using below formula.
[tex]Volume = Length\times width\times height[/tex]
Volume of the large box.
[tex]Volume = Length\times width\times height[/tex]
So, the volume of the large box.
[tex]V_{lb} = 40\times 24\times 18[/tex]
[tex]V_{lb} = 17280\ cubic\ feet[/tex]
Volume of the smaller box(box 1).
[tex]Volume = Length\times width\times height[/tex]
So, the volume of the large box.
[tex]V_{b1} = 30\times 18\times 6[/tex]
[tex]V_{b1} = 3240\ cubic\ feet[/tex]
Volume of the smaller box(box 2).
[tex]Volume = Length\times width\times height[/tex]
So, the volume of the large box.
[tex]V_{b2} = 30\times 12\times 6[/tex]
[tex]V_{b2} = 2160\ cubic\ feet[/tex]
Volume of the smaller box(box 3).
[tex]Volume = Length\times width\times height[/tex]
So, the volume of the large box.
[tex]V_{b3}= 18\times 12\times 6[/tex]
[tex]V_{b3}= 1296\ cubic\ feet[/tex]
We know that the volume of the solid is equal to sum of the all boxes.
Volume of the solid
[tex]V_{s} = V_{lb}+V_{b1}+V_{b2}+V_{b3}[/tex]
[tex]V_{s} = 17280+3240+2160+1296[/tex]
[tex]V_{s}=23976\ cubic\ feet[/tex]
Therefore, the volume of the solid [tex]V_{s}=23976\ cubic\ feet[/tex]