(a)
Given:
[tex]\vec{a}[/tex] is in xy plane and [tex]\vec{b}[/tex] is in the direction of k.
|a|=6 units, |b|=3 and θ = 90°
|a × b| = |a| × |b| sinθ
= |a| × |b| sin90°
= 6 × 3 × 1
|a × b| = 18
(b)
Let [tex]\vec{c}=\vec{a} \times \vec{b}[/tex]
[tex]\vec{c}[/tex] is perpendicular to both [tex]\vec{a} \text { and } \vec{b}[/tex].
In this case,
x-component of [tex]\vec{a} \times \vec{b}[/tex] is positive.
y-component of [tex]\vec{a} \times \vec{b}[/tex] is negative.
z-component of [tex]\vec{a} \times \vec{b}[/tex] is zero.