Respuesta :

(a)

Given:  

[tex]\vec{a}[/tex] is in xy plane and [tex]\vec{b}[/tex] is in the direction of k.

|a|=6 units, |b|=3 and θ = 90°

|a × b| = |a| × |b| sinθ  

          = |a| × |b| sin90°  

          = 6 × 3 × 1  

|a × b| = 18  

(b)

Let [tex]\vec{c}=\vec{a} \times \vec{b}[/tex]

[tex]\vec{c}[/tex] is perpendicular to both [tex]\vec{a} \text { and } \vec{b}[/tex].

In this case,

x-component of [tex]\vec{a} \times \vec{b}[/tex] is positive.

y-component of [tex]\vec{a} \times \vec{b}[/tex] is negative.

z-component of [tex]\vec{a} \times \vec{b}[/tex] is zero.

ACCESS MORE