Respuesta :
Answer:
Step-by-step explanation:
The given question incomplete; here is the complete question given in the attachment.
The rate of change of the mass A of salt at the time 't' is proportional to the square of the mass of salt present at the time t.
[tex]\frac{dA}{dt}[/tex] ∝ A²
[tex]\frac{dA}{dt}[/tex] = kA² [k = proportionality constant]
And the given conditions are
[tex]A_{0}=10[/tex] and [tex]A_{10}=4[/tex]
a). [tex]\frac{dA}{dt}=kA^{2}[/tex]
[tex]A_{0}=10[/tex] and [tex]A_{10}=4[/tex]
b). From the differential equation [tex]\frac{dA}{dt}=kA^{2}[/tex]
[tex]\frac{dA}{A^{2} }=kdt[/tex]
By integration on both the sides of the equation.
[tex]\int {\frac{1}{A^{2} } } \, dA=k\int dt[/tex]
[tex]-\frac{1}{A}=kt+c[/tex] [c = integration constant]
From the given conditions in the question,
For [tex]A_{0}=10[/tex],
[tex]-\frac{1}{10}=k\times 0+c[/tex]
c = [tex]-\frac{1}{10}[/tex]
For [tex]A_{10}=4[/tex],
[tex]-\frac{1}{4}=k\times 10+c[/tex]
Since c = [tex]-\frac{1}{10}[/tex]
Therefore, [tex]-\frac{1}{4}=10k-\frac{1}{10}[/tex]
k = [tex]\frac{1}{10}(\frac{1}{10}-\frac{1}{4})[/tex]
k = [tex]\frac{1}{10}\times \frac{(4-10)}{40}[/tex]
k = - [tex]\frac{6}{400}[/tex]
k = - [tex]\frac{3}{200}[/tex]
Now we place the values of constants in the solution of integration
[tex]-\frac{1}{A}=-\frac{3}{200}t-\frac{1}{10}[/tex]
[tex]\frac{1}{A}=\frac{3t+20}{200}[/tex]
A = [tex]\frac{200}{3t+20}[/tex]
c). Now we have to calculate the time when A(t) < 1
From part b,
[tex]A_{t}=\frac{200}{3t+20}[/tex]
Therefore, [tex]\frac{200}{3t+20}<1[/tex]
By solving the inequality,
3t + 20 > 200
3t > 200 - 20
3t > 180
t > 60
Therefore, after 60 hours [tex]A_{t}<1[/tex]
![Ver imagen eudora](https://us-static.z-dn.net/files/d74/6f77d95eea5bd46f1f39f7debb6edba9.png)