Respuesta :

Answer:

Part a) The area of the shaded region is [tex]A=25(\frac{2\pi}{3}-\sqrt{3})\ cm^2[/tex]

Part b) The area of the shaded region is [tex]A=18(3\pi-2\sqrt{2})\ cm^2[/tex]

Step-by-step explanation:

Part a) we know that

step 1

Find the area of the sector

we know that

The area of a circle subtends a central angle of 2π radians

so

using proportion

Find the area of the sector by a central angle of π/3 radians

[tex]\frac{\pi r^2}{2\pi}= \frac{x}{\pi/3} \\\\x=\frac{\pi r^2}{6}[/tex]

we have

[tex]r=10\ cm[/tex]

substitute

[tex]x=\frac{\pi (10)^2}{6}\\\\x=\frac{50\pi}{3}\ cm^2[/tex]

step 2

Find the area of triangle

The area of triangle is equal to

[tex]A=\frac{1}{2} (10^2)sin(\frac{\pi}{3})[/tex]

Remember that

[tex]\frac{\pi}{3}=60^o[/tex]

so

[tex]A=50(\frac{\sqrt{3}}{2})=25\sqrt{3}\ cm^2[/tex]

step 3

Find the area of the shaded region

The area of the shaded region is equal to the area of the sector minus the area of isosceles triangle

so

[tex]A=(\frac{50\pi}{3}-25\sqrt{3})\ cm^2[/tex]

Simplify

[tex]A=25(\frac{2\pi}{3}-\sqrt{3})\ cm^2[/tex]

Part b) we know that

step 1

Find the area of the sector

we know that

The area of a circle subtends a central angle of 360 degrees

so

using proportion

Find the area of the sector by a central angle of 135 degrees

[tex]\frac{\pi r^2}{360^o}= \frac{x}{135^o} \\\\x=0.375\pi r^2[/tex]

we have

[tex]r=12\ cm[/tex]

substitute

[tex]x=0.375\pi (12)^2\\\\x=54\pi\ cm^2[/tex]

step 2

Find the area of triangle

The area of triangle is equal to

[tex]A=\frac{1}{2} (12^2)sin(135^o)[/tex]

[tex]A=72(\frac{\sqrt{2}}{2})=36\sqrt{2}\ cm^2[/tex]

step 3

Find the area of the shaded region

The area of the shaded region is equal to the area of the sector minus the area of isosceles triangle

so

[tex]A=(54\pi-36\sqrt{2})\ cm^2[/tex]

Simplify

[tex]A=18(3\pi-2\sqrt{2})\ cm^2[/tex]

ACCESS MORE