How do I find the area of the shaded region?
![How do I find the area of the shaded region class=](https://us-static.z-dn.net/files/dcb/df1c7cb12cd50b9be99cbb86a4c1248a.jpg)
Answer:
Part a) The area of the shaded region is [tex]A=25(\frac{2\pi}{3}-\sqrt{3})\ cm^2[/tex]
Part b) The area of the shaded region is [tex]A=18(3\pi-2\sqrt{2})\ cm^2[/tex]
Step-by-step explanation:
Part a) we know that
step 1
Find the area of the sector
we know that
The area of a circle subtends a central angle of 2π radians
so
using proportion
Find the area of the sector by a central angle of π/3 radians
[tex]\frac{\pi r^2}{2\pi}= \frac{x}{\pi/3} \\\\x=\frac{\pi r^2}{6}[/tex]
we have
[tex]r=10\ cm[/tex]
substitute
[tex]x=\frac{\pi (10)^2}{6}\\\\x=\frac{50\pi}{3}\ cm^2[/tex]
step 2
Find the area of triangle
The area of triangle is equal to
[tex]A=\frac{1}{2} (10^2)sin(\frac{\pi}{3})[/tex]
Remember that
[tex]\frac{\pi}{3}=60^o[/tex]
so
[tex]A=50(\frac{\sqrt{3}}{2})=25\sqrt{3}\ cm^2[/tex]
step 3
Find the area of the shaded region
The area of the shaded region is equal to the area of the sector minus the area of isosceles triangle
so
[tex]A=(\frac{50\pi}{3}-25\sqrt{3})\ cm^2[/tex]
Simplify
[tex]A=25(\frac{2\pi}{3}-\sqrt{3})\ cm^2[/tex]
Part b) we know that
step 1
Find the area of the sector
we know that
The area of a circle subtends a central angle of 360 degrees
so
using proportion
Find the area of the sector by a central angle of 135 degrees
[tex]\frac{\pi r^2}{360^o}= \frac{x}{135^o} \\\\x=0.375\pi r^2[/tex]
we have
[tex]r=12\ cm[/tex]
substitute
[tex]x=0.375\pi (12)^2\\\\x=54\pi\ cm^2[/tex]
step 2
Find the area of triangle
The area of triangle is equal to
[tex]A=\frac{1}{2} (12^2)sin(135^o)[/tex]
[tex]A=72(\frac{\sqrt{2}}{2})=36\sqrt{2}\ cm^2[/tex]
step 3
Find the area of the shaded region
The area of the shaded region is equal to the area of the sector minus the area of isosceles triangle
so
[tex]A=(54\pi-36\sqrt{2})\ cm^2[/tex]
Simplify
[tex]A=18(3\pi-2\sqrt{2})\ cm^2[/tex]