Respuesta :
Answer:
C) a sample distribution of a sample mean with n = 10
[tex]\mu_{{\overline}{X}} = 3.5[/tex]
and [tex]\sigma_{{\overline}{Y}} = 0.38[/tex]
Step-by-step explanation:
Here, the random experiment is rolling 10, 6 faced (with faces numbered from 1 to 6) fair dice and recording the average of the numbers which comes up and the experiment is repeated 20 times.So, here sample size, n = 20 .
Let,
[tex]X_{ij}[/tex] = The number which comes up on the ith die on the jth trial.
∀ i = 1(1)10 and j = 1(1)20
Then,
[tex]E(X_{ij})[/tex] = [tex]\frac {1 + 2 + 3 + 4 + 5 + 6}{6}[/tex]
= 3.5 ∀ i = 1(1)10 and j = 1(1)20
and,
[tex]E(X^{2}_{ij}[/tex] = [tex]\frac {1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + 6^{2}}{6}[/tex]
= [tex]\frac {1 + 4 + 9 + 16 + 25 + 36}{6}[/tex]
= [tex]\frac {91}{6}[/tex]
[tex]\simeq[/tex] 15.166667
so, [tex]Var(X_{ij}[/tex] = [tex](E(X^{2}_{ij} - {(E(X_{ij})}^{2})[/tex]
[tex]\simeq 15.166667 - 3.5^{2}[/tex]
= 2.91667
and [tex]\sigma_{X_{ij}}[/tex] = [tex]\sqrt {2.91667}[/tex
[tex]\simeq 1.7078261036[/tex]
Now we get that,
[tex]Y_{j} = \frac {\sum_{j = 1}^{20}X_{ij}}{20}[/tex]
We get that [tex]Y_{j}'s[/tex] are iid RV's ∀ j = 1(1)20
Let, [tex]{\overline}{Y} = \frac {\sum_{j = 1}^{20}Y_{j}}{20}[/tex]
So, we get that [tex]E({\overline}{Y}) = E(Y_{j})[/tex]
= [tex]E(X_{ij}[/tex] for any i = 1(1)10
= 3.5
and,
[tex]\sigma_{({\overline}{Y})} = \frac {\sigma_{Y_{j}}}{\sqrt {20}}
= \frac {\sigma_{X_{ij}}}{\sqrt {20}}
= \frac {1.7078261036}{\sqrt {20}}
[tex]\simeq 0.38[/tex]
Hence, the option which best describes the distribution being simulated is given by,
C) a sample distribution of a sample mean with n = 10
[tex]\mu_{{\overline}{X}} = 3.5[/tex]
and [tex]\sigma_{{\overline}{Y}} = 0.38[/tex]
We can describes the distribution being simulate by finding the mean and standard deviation. The standard deviation is the square root of variance.
The correct option is (a).
Given:
The faces were numbered 1 through 6.
The average number appearing is [tex]n=10[/tex].
The calculation of mean is as follows,
[tex]\mu_{\overline{x}}=\dfrac {1+2+3+4+5+6}{6}\\\mu_{\overline{x}}=3.5[/tex]
The variance of a single roll of a die is,
[tex]\sigma_x^2=\sum_{i=1}^6 \frac16 \left(i-3.5 \right)^2=\dfrac{35}{12}[/tex]
The variance of the mean of the random variables is,
[tex]Var(\overline X)=\dfrac{ \Large{\sigma_{x}^2}}n[/tex]
Substitute the value.
[tex]Var(\overline X)=\dfrac{\left(\dfrac{35}{12}\right)}{10}\\Var(\overline X)=0.291[/tex]
As we know that standard deviation is the square root of variance.
[tex]\sigma_{\bar X}=\sqrt{Var(\overline X)} \\=\sqrt{0.291}\\\sigma_{\bar{x}}\approx 0.54[/tex]
Thus, the correct option is (a).
Learn more about what standard deviation is here:
https://brainly.com/question/23907081