Respuesta :
Answer:
Explanation:
Given
Volume displaced by diver [tex]V=70\ L[/tex]
mass of scuba diver [tex]m=74.3\ kg[/tex]
Also density of sea water [tex]\rho _s=1.025\times 10^3\ kg/m^3[/tex]
Weight of diver [tex]W=mg=74.3\times 9.8=728.14\ N[/tex]
Buoyant force on diver [tex]F_b=\rho _s\times V\times g[/tex]
[tex]F_b=1025\times 70\times 10^{-3}\times 9.8=703.15\ N[/tex]
Since weight is greater than buoyant force so diver will sink in the sea
Answer:
The buoyant force on the diver is 703.15 N.
The diver will sink.
Explanation:
Given that,
Displace volume = 70.0 L
Total mass = 74.3 kg
We need to calculate the buoyant force on the diver
Using formula of buoyant force
[tex]F_{b}=\rho gV[/tex]
Where, V = volume
g = acceleration due to gravity
[tex]\rho[/tex]=density of water
Put the value into the formula
[tex]F_{b}=1.025\times10^{3}\times9.8\times70.0\times10^{-3}[/tex]
[tex]F_{b}=703.15\ N[/tex]
We need to calculate the weight of diver
Using formula of weight
[tex]W= mg[/tex]
[tex]W=74.3\times9.8[/tex]
[tex]W=728.14\ N[/tex]
As the weight of diver > upthrust force
The diver will sink
Hence, The buoyant force on the diver is 703.15 N.
The diver will sink.