Answer:
13 square units
Step-by-step explanation:
Let the vertices of parallelogram are
A(2,2,0),B(5,3,0),C(4,7,0) and D(7,8,0)
Side AB=[tex]B-A=<5,3,0>-<2,2,0>=<3,1,0>[/tex]
Side AD=D-A=[tex]<7,8,0>-<2,2,0>=<5,6,0>[/tex]
We know that
Area of parallelogram=Magnitude of product of adjacent sides
[tex]AB\times AD=\begin{vmatrix}i&j&k\\3&1&0\\5&6&0\end{vmatrix}[/tex]
[tex]AB\times AD=<0,0,1>[/tex]
[tex]\mid AB\times AD\mid=\sqrt{x^2+y^2+z^2}[/tex]
[tex]\mid AB\times AD\mid=\sqrt{0+0+(13)^2}[/tex]
Where x=Component along x-axis
y=Component along y- axis
z=Component along z-axis
[tex]\mid AB\times AD\mid=13[/tex]Square units
Hence, the area of parallelogram=13 square units