Respuesta :
Answer:
[tex]\lim\limits_{(x,y)\rightarrow(0,0)}\left(\sqrt{x^2+y^2+49}+7\right)=14[/tex]
Step-by-step explanation:
to find the limit:
[tex]\lim\limits_{(x,y)\rightarrow(0,0)}\left(\dfrac{x^2+y^2}{\sqrt{x^2+y^2+49}-7}\right)[/tex]
we need to first rationalize our expression.
[tex]\dfrac{x^2+y^2}{\sqrt{x^2+y^2+49}-7}\left(\dfrac{\sqrt{x^2+y^2+49}+7}{\sqrt{x^2+y^2+49}+7}\right)[/tex]
[tex]\dfrac{(x^2+y^2)(\sqrt{x^2+y^2+49}+7)}{(\sqrt{x^2+y^2+49}\,)^2-7^2}[/tex]
[tex]\dfrac{(x^2+y^2)(\sqrt{x^2+y^2+49}+7)}{(x^2+y^2)}[/tex]
[tex]\sqrt{x^2+y^2+49}+7[/tex]
Now this is our simplified expression, we can use our limit now.
[tex]\lim\limits_{(x,y)\rightarrow(0,0)}\left(\sqrt{x^2+y^2+49}+7\right)\\\sqrt{0^2+0^2+49+7}\\7+7\\14[/tex]
Limit exists and it is 14 at (0,0)
Rationalizing the denominator, it is found that the result of the limit is of 14.
What is a limit?
A limit is given by the value of function f(x) as x tends to a value.
In this problem, the limit is given by:
[tex]\lim_{(x,y) \rightarrow (0,0)} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 49} - 7}[/tex]
Applying the standard substitution, we end up with 0/0, hence we have to rationalize the denominator, thus:
[tex]\lim_{(x,y) \rightarrow (0,0)} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 49} - 7} \times \frac{\sqrt{x^2 + y^2 + 49} + 7}{\sqrt{x^2 + y^2 + 49} + 7}[/tex]
Applying the subtraction of perfect squares:
[tex]\lim_{(x,y) \rightarrow (0,0)} \frac{(x^2 + y^2)(\sqrt{x^2 + y^2 + 49} + 7)}{x^2 + y^2 - 49 + 49}[/tex]
We can simplify, hence:
[tex]\lim_{(x,y) \rightarrow (0,0)} \sqrt{x^2 + y^2 + 49} + 7 = \sqrt{49} + 7 = 14[/tex]
The result of the limit is of 14.
More can be learned about limits at https://brainly.com/question/26270080