A body on the surface of a planet with the same radius as Earths weighs 10 times more than it does on Earth. What is the mass of this planet in terms of Earths mass?

Respuesta :

Answer:

Explanation:

Given

radius of Planet is equal to radius of Earth

[tex]r_p=r_e[/tex]

Weight of body on Planet [tex]F_p=mg_p[/tex]

where m=mass of body

[tex]g_p=acceleration\ due\ to\ gravity\ on\ surface\ of\ Planet[/tex]

Weight of body on earth [tex]F_e=mg_e[/tex]

[tex]g_e=acceleration\ due\ to\ gravity\ on\ Earth[/tex]

acceleration due to gravity is given by

[tex]g=\frac{GM}{r^2}[/tex]

where G=gravitational constant

M=mass of Planet

r=radius of planet

for earth [tex]g_e=\frac{GM_e}{r_e^2}[/tex]

for planet [tex]g_p=\frac{GM_p}{r_p^2}[/tex]

substituting these values in [tex]F_e[/tex] and [tex]F_p[/tex]

[tex]F_p=m\times \frac{GM_p}{r_p^2}---1[/tex]

[tex]F_e=m\times \frac{GM_e}{r_e^2}---2[/tex]

divide 1 and 2

[tex]\frac{F_p}{F_e}=\frac{m\times \frac{GM_p}{r_p^2}}{m\times \frac{GM_e}{r_e^2}}[/tex]

[tex]10=\frac{M_p}{M_e}[/tex]

[tex]M_p=10M_e[/tex]

ACCESS MORE