Answer:
Explanation:
Given
radius of Planet is equal to radius of Earth
[tex]r_p=r_e[/tex]
Weight of body on Planet [tex]F_p=mg_p[/tex]
where m=mass of body
[tex]g_p=acceleration\ due\ to\ gravity\ on\ surface\ of\ Planet[/tex]
Weight of body on earth [tex]F_e=mg_e[/tex]
[tex]g_e=acceleration\ due\ to\ gravity\ on\ Earth[/tex]
acceleration due to gravity is given by
[tex]g=\frac{GM}{r^2}[/tex]
where G=gravitational constant
M=mass of Planet
r=radius of planet
for earth [tex]g_e=\frac{GM_e}{r_e^2}[/tex]
for planet [tex]g_p=\frac{GM_p}{r_p^2}[/tex]
substituting these values in [tex]F_e[/tex] and [tex]F_p[/tex]
[tex]F_p=m\times \frac{GM_p}{r_p^2}---1[/tex]
[tex]F_e=m\times \frac{GM_e}{r_e^2}---2[/tex]
divide 1 and 2
[tex]\frac{F_p}{F_e}=\frac{m\times \frac{GM_p}{r_p^2}}{m\times \frac{GM_e}{r_e^2}}[/tex]
[tex]10=\frac{M_p}{M_e}[/tex]
[tex]M_p=10M_e[/tex]