Use the fundamental identities and appropriate algebraic operations to simplify the following expression. (18 +tan x) (18-tan x)+ sec 2x Complete the following statement The lowest point on the graph of y = cos x, 0sxs2x, occurs when x-

Respuesta :

Answer:

a) [tex]\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)+\sec ^2\left(x\right)=325[/tex]

b) The lowest point of [tex]y=\cos \left(x\right)[/tex], [tex]0\leq x\leq 2\pi[/tex] is when x = [tex]\pi[/tex]

Step-by-step explanation:

a) To simplify the expression [tex]\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)+\sec ^2\left(x\right)[/tex] you must:

Apply Difference of Two Squares Formula: [tex]\left(a+b\right)\left(a-b\right)=a^2-b^2[/tex]

[tex]a=18,\:b=\tan \left(x\right)[/tex]

[tex]\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)=18^2-\tan ^2\left(x\right)=324-\tan ^2\left(x\right)[/tex]

[tex]324-\tan ^2\left(x\right)+\sec ^2\left(x\right)[/tex]

Apply the Pythagorean Identity [tex]1+\tan ^2\left(x\right)=\sec ^2\left(x\right)[/tex]

From the Pythagorean Identity, we know that [tex]1=-\tan ^2\left(x\right)+\sec ^2\left(x\right)[/tex]

Therefore,

[tex]324[-\tan ^2\left(x\right)+\sec ^2\left(x\right))]\\324[+1]\\325[/tex]

b) According with the below graph, the lowest point of [tex]y=\cos \left(x\right)[/tex], [tex]0\leq x\leq 2\pi[/tex] is when x = [tex]\pi[/tex]

Ver imagen franciscocruz28
ACCESS MORE