Respuesta :
Answer:
a) [tex]\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)+\sec ^2\left(x\right)=325[/tex]
b) The lowest point of [tex]y=\cos \left(x\right)[/tex], [tex]0\leq x\leq 2\pi[/tex] is when x = [tex]\pi[/tex]
Step-by-step explanation:
a) To simplify the expression [tex]\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)+\sec ^2\left(x\right)[/tex] you must:
Apply Difference of Two Squares Formula: [tex]\left(a+b\right)\left(a-b\right)=a^2-b^2[/tex]
[tex]a=18,\:b=\tan \left(x\right)[/tex]
[tex]\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)=18^2-\tan ^2\left(x\right)=324-\tan ^2\left(x\right)[/tex]
[tex]324-\tan ^2\left(x\right)+\sec ^2\left(x\right)[/tex]
Apply the Pythagorean Identity [tex]1+\tan ^2\left(x\right)=\sec ^2\left(x\right)[/tex]
From the Pythagorean Identity, we know that [tex]1=-\tan ^2\left(x\right)+\sec ^2\left(x\right)[/tex]
Therefore,
[tex]324[-\tan ^2\left(x\right)+\sec ^2\left(x\right))]\\324[+1]\\325[/tex]
b) According with the below graph, the lowest point of [tex]y=\cos \left(x\right)[/tex], [tex]0\leq x\leq 2\pi[/tex] is when x = [tex]\pi[/tex]
