The drawing shows an equilateral triangle, each side of which has a length of 2.00 cm. Point charges are fixed to each corner, as shown. The 4.00 microC charge experiences a net force due to the charges qA and q B. This net force points vertically downward and has a magnitude of 405 N. Determine the magnitudes and algebraic signs of the charges qA and q B.

Respuesta :

Answer:

[tex]-2.60097\times 10^{-6}\ C[/tex]

Explanation:

k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]

r = Distance between charges = 2 cm

The electric force is given by

[tex]F=\dfrac{k4\times 10^{-6}q_A}{r^2}[/tex]

Also

[tex]F=\dfrac{k4\times 10^{-6}q_B}{r^2}[/tex]

The sum of the force is given by

[tex]\sum F=\dfrac{k4\times 10^{-6}q_A}{r^2}cos 30+\dfrac{k4\times 10^{-6}q_B}{r^2}cos 30\\\Rightarrow \sum F=2\dfrac{k4\times 10^{-6}q_A}{r^2}cos 30\\\Rightarrow q_a=\dfrac{\sum Fr^2}{2\times k4\times 10^{-6}cos30}\\\Rightarrow q_a=\dfrac{405\times 0.02^2}{2\times 8.99\times 10^9\times 4\times 10^{-6}cos30}\\\Rightarrow q_a=2.60097\times 10^{-6}\ C[/tex]

Thus [tex]q_a=q_b=-2.60097\times 10^{-6}\ C[/tex].

The negative sign is because the force points downward which is taken as negative

The magnitude of each reference charge  [tex]q_{A}[/tex] and [tex]q_{B}[/tex] is [tex]+4.5\;\rm \mu C[/tex]. And their algebraic signs are positive.

Given data:

The length of side of equilateral triangle is, L = 2.00 cm.

The magnitude of test charge is, [tex]q= 4.00\;\rm \mu C = 4.00 \times 10^{-6} \;\rm C[/tex].

The magnitude of net force is, [tex]F = 405 \;\rm N[/tex].

Let us consider two reference charges, say [tex]q_{A}[/tex] and [tex]q_{B}[/tex]. Then the force between the each of reference charge and test charge is,

[tex]F = \dfrac{k \times q \times q_{A}}{L^{2}}[/tex]

here, k is the Coulomb's constant.

Solving as,

[tex]405 = \dfrac{9 \times 10^{9} \times 4.00 \times 10^{-6} \times q_{A}}{0.02^{2}}\\\\q_{A}=4.5 \times 10^{-6} \;\rm C = 4.5\;\rm \mu C[/tex]

Similarly, solve for the value other reference charge as,

[tex]F = \dfrac{k \times q \times q_{B}}{L^{2}}\\405 = \dfrac{9 \times 10^{9} \times 4.00 \times 10^{-6} \times q_{B}}{0.02^{2}}\\\\q_{B}=4.5 \times 10^{-6} \;\rm C = 4.5\;\rm \mu C[/tex]

Thus, we can conclude that the magnitude of each reference charge  [tex]q_{A}[/tex] and [tex]q_{B}[/tex] is [tex]+4.5\;\rm \mu C[/tex].

Learn more about the coulomb's force here:

https://brainly.com/question/1616890

ACCESS MORE