Answer:
The escape speed of the planet is 41.29 m/s.
Explanation:
Given that,
Speed = 52.9 m/s
Final speed = 32.3 m/s
We need to calculate the launched with excess kinetic energy
Using formula of kinetic energy
[tex]K.E=\dfrac{1}{2}mv^2[/tex]
[tex]K.E=\dfrac{1}{2}\times m\times(32.3)^2[/tex]
We need to calculate the escape speed of the planet
Using formula of kinetic energy
[tex]\text{escape kinetic energy}=\text{launch kinetic energy}-\text{excess kinetic energy}[/tex]
[tex]\dfrac{1}{2}mv^2=\dfrac{1}{2}mv^2-\dfrac{1}{2}mv^2[/tex]
[tex]\dfrac{1}{2}\times v^2=\dfrac{1}{2}\times(52.9)^2-\dfrac{1}{2}\times(32.3)^2[/tex]
[tex]v=\sqrt{2\times(\dfrac{1}{2}\times(52.9)^2-\dfrac{1}{2}\times(32.3)^2)}[/tex]
[tex]v=41.29\ m/s[/tex]
Hence, The escape speed of the planet is 41.29 m/s.