Find the values for x and y in OABCD.
11. AE = 3x, EC = y, DE = 4x, EB = y + 1
![Find the values for x and y in OABCD11 AE 3x EC y DE 4x EB y 1 class=](https://us-static.z-dn.net/files/d7b/1747cf0da5b6ab6d747aef3b2316f02a.jpg)
Answer:
x=1, y=3
Step-by-step explanation:
we know that
In a parallelogram, the diagonals bisect each others
In this problem ABCD is a parallelogram
so
AE=EC
DE=EB
substitute the given values
[tex]3x=y[/tex] ----> equation A
[tex]4x=y+1[/tex] ----> equation B
Solve the system by substitution
substitute equation A in equation B
[tex]4x=3x+1[/tex]
solve for x
[tex]4x-3x=1\\x=1[/tex]
Find the value of y
[tex]y=3(1)=3[/tex]
therefore
x=1, y=3