Answer:
Explanation:
For original wave,
Given: [tex]D(x,t) = Acos(kx - \omega t)[/tex]
A=amplitude of incident wave=0.001m
V=speed of wave
[tex]\mu_1[/tex]=linear mass density
T=tension in string
[tex]K=\frac{2\pi}{\lambda_1}=\frac{2\pi}{0.8}=7.854m^{-1}[/tex]
[tex]\omega=VK=K\sqrt{\frac{T}{\mu _{1}}}=K\sqrt{\frac{8.0}{0.0128}}=196.35rad/s[/tex]
For reflected wave and transmitted wave ω remains same because frequency does not change. So
[tex]\omega = 196.35rad/s[/tex]
For reflected wave [tex]K=\frac{2\pi}{\lambda_1}=\frac{2\pi}{0.8}=7.854m^{-1}[/tex]
For transmitted wave [tex]K=\frac{2\pi}{\lambda_2}\\\\\frac{V_1}{V_2}=\frac{\lambda_1}{\lambda_2}=\sqrt{\frac{\mu_2}{\mu_1}}\\\\\lambda_2=0.8\sqrt{\frac{0.0128}{0.0572}}=0.4\\\\K=\frac{2\pi}{0.4}=15.708m^{-1}[/tex]