Answer:
4 %
Explanation:
mass of the object 1, m₁ = 0.1 Kg
initial velocity of object 1,v₁= 0.2 m/s
mass of object 2, m₂ = 0.15 kg
initial speed of the object 2. v₂ = 0 m/s
Kinetic energy retained by the object 1 = ?
using the formula to calculate velocity of the ball after collision
[tex]v_{1f}=\dfrac{m_1-m_2}{m_1+m_2}\ v_1 +\dfrac{2m_2}{m_1+m_2}v_2[/tex]
[tex]v_{1f}=\dfrac{m_1-m_2}{m_1+m_2}\ v_1[/tex]
[tex]v_{1f}=\dfrac{0.1-0.15}{0.1+0.15}\times 0.2[/tex]
[tex]v_{1f}= - 0.04 m/s[/tex]
negative sign represent the velocity is in opposite direction after collision.
Initial KE
[tex]KE_1 = \dfrac{1}{2}mv_1^2[/tex]
[tex]KE_1 = \dfrac{1}{2}\times 0.1 \times 0.2^2[/tex]
[tex]KE_1 = 0.002\ J[/tex]
final KE
[tex]KE_2 = \dfrac{1}{2}mv_2^2[/tex]
[tex]KE_2= \dfrac{1}{2}\times 0.1 \times 0.04^2[/tex]
[tex]KE_2= 0.00008\ J[/tex]
% of KE retained
= [tex]\dfrac{KE_2}{KE_1}\times 100[/tex]
= [tex]\dfrac{0.00008}{0.002}\times 100[/tex]
= 4 %
the percentage of Kinetic energy retained after collision is equal to 4 %