A lunar lander is descending toward the moon's surface. Until the lander reaches the surface, its height above the surface of the moon is given by y(t)=b−ct+dt2, where b = 800 m is the initial height of the lander above the surface, c = 63.0 m/s , and d = 1.05 m/s2What is the initial velocity of the lander, at t = 0 and just before it reaches the lunar surface?

Respuesta :

Answer:

Part A:

[tex]v_y=-63 m/s[/tex]

Part B:

[tex]v_y=-24.67792 m/s[/tex]

Explanation:

Part A:

The formula we are going to use is:

[tex]v_{y}= \frac{dy(t)}{dt} \\v_y=\frac{d(b-ct+dt^2)}{dt} \\v_y=-c+2d*t[/tex]

For finding the initial velocity we put t=0 in above formula:

[tex]v_y=-c+2d*t[/tex]

[tex]v_y=-c+2d*0[/tex]

[tex]v_y=-c[/tex]

c=63 So,

[tex]v_y=-63 m/s[/tex]

Part B:

When lander reaches the lunar surface y(t)=0

[tex]y(t)=b-ct+dt^2=0[/tex]

Using Quadratic formula:

[tex]t=\frac{-b\±\sqrt{b^2-4ac} }{2a}[/tex]

In our case:

[tex]t=\frac{c\±\sqrt{c^2-4db} }{2d}[/tex]

[tex]t=\frac{63\±\sqrt{(63)^2-4*1.05*800} }{2*1.05}[/tex]

[tex]t=41.75139sec[/tex]                [tex]t=18.248606sec[/tex]

We are going to choose t=18.248606 sec because it is smaller.

[tex]v_y=-c+2d*t[/tex] (Calculated above)

[tex]v_y=-63+2(1.05)*18.248606[/tex]

[tex]v_y=-24.67792 m/s[/tex]

ACCESS MORE