Estimate the change in the equilibrium melting point of copper caused by a change in pressure of 10 kbar. The molar volume of copper is 8.0 x 10-6 m3 for the liquid, and 7.6 x 10-6 for the solid phase. The latent heat of fusion of copper is 13.05 kJ mol-1. The melting point is 1085°C.

Respuesta :

Answer:

The change in the equilibrium melting point is 4.162 K.

Explanation:

Given that,

Pressure = 10 kbar

Molar volume of copper[tex]V=8.0\times10^{-6}\ m^3[/tex]

Volume of liquid [tex]V=7.6\times10^{-6}\ m^3[/tex]

Latent heat of fusion [tex]L= 13.05 kJ[/tex]

Melting point =1085°C

We need to calculate the change temperature

Using Clapeyron equation

[tex]\dfrac{\Delta P}{\Delta T}=\dfrac{\Delta H}{T\Delta V}[/tex]

Put the value into the formula

[tex]\dfrac{1000\times10^{5}}{\Delta T}=\dfrac{13050}{(1085+273)\times(8.0-7.6)\times10^{-6}}[/tex]

[tex]\Delta T=\dfrac{1000\times10^{-5}\times(1085+273)\times(8.0-7.6)\times10^{-6}}{13050}[/tex]

[tex]\Delta T=4.162\ K[/tex]

Hence, The change in the equilibrium melting point is 4.162 K.