Answer:
The change in the equilibrium melting point is 4.162 K.
Explanation:
Given that,
Pressure = 10 kbar
Molar volume of copper[tex]V=8.0\times10^{-6}\ m^3[/tex]
Volume of liquid [tex]V=7.6\times10^{-6}\ m^3[/tex]
Latent heat of fusion [tex]L= 13.05 kJ[/tex]
Melting point =1085°C
We need to calculate the change temperature
Using Clapeyron equation
[tex]\dfrac{\Delta P}{\Delta T}=\dfrac{\Delta H}{T\Delta V}[/tex]
Put the value into the formula
[tex]\dfrac{1000\times10^{5}}{\Delta T}=\dfrac{13050}{(1085+273)\times(8.0-7.6)\times10^{-6}}[/tex]
[tex]\Delta T=\dfrac{1000\times10^{-5}\times(1085+273)\times(8.0-7.6)\times10^{-6}}{13050}[/tex]
[tex]\Delta T=4.162\ K[/tex]
Hence, The change in the equilibrium melting point is 4.162 K.