Respuesta :
Answer:
vector equation:
[tex]\overrightarrow{PQ}=\begin{bmatrix}1/2}\\4/3\\-3/4\end{bmatrix}[/tex]
parametric equations:
[tex]r_x = \dfrac{1}{2}t\\r_y = -1 +\dfrac{4}{3}t\\r_z = 1=\dfrac{3}{4}t[/tex]
Step-by-step explanation:
The coordinates of the points are given as:
P(0,-1,1) and Q(1/2,1/3,1/4)
the coordinates of any points are also position vectors (vectors starting from the origin to that point), and can be represented as:
[tex]\overrightarrow{OP} = 0\hat{i}-1\hat{j}+1\hat{k}[/tex]
or
[tex]\overrightarrow{OP} = \begin{bmatrix}0\\-1\\1\end{bmatrix}[/tex]
similarly,
[tex]\overrightarrow{OQ} =\dfrac{1}{2}\hat{i}+\dfrac{1}{3}\hat{j}+\dfrac{1}{4}\hat{k}[/tex]
or
[tex]\overrightarrow{OQ} = \begin{bmatrix}1/2}\\1/3\\1/4\end{bmatrix}[/tex]
the vector PQ can be described as:
[tex]\overrightarrow{PQ}=\overrightarrow{OQ}-\overrightarrow{OP}[/tex]
[tex]\overrightarrow{PQ}=\begin{bmatrix}1/2}\\1/3\\1/4\end{bmatrix}-\begin{bmatrix}0\\-1\\1\end{bmatrix}[/tex]
[tex]\overrightarrow{PQ}=\begin{bmatrix}1/2}\\4/3\\-3/4\end{bmatrix}[/tex]
this is the vector equation of the line segment from P to Q.
to make the parametric equations:
we know that the general equation of a line is represented as:
[tex]\overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{d}[/tex]
here, [tex]\overrightarrow{r_0}[/tex]: is the initial position or the starting point. in our case it is the position vector of P
and [tex]\overrightarrow{d}[/tex]: is the direction vector or the direction of the line. in our case that's PQ vector.
[tex]\overrightarrow{r} = \begin{bmatrix}0\\-1\\1\end{bmatrix} + t\begin{bmatrix}1/2}\\4/3\\-3/4\end{bmatrix}[/tex]
that parametric equations can now be easily formed:
[tex]\begin{bmatrix}r_x\\r_y\\r_z\end{bmatrix} = \begin{bmatrix}0\\-1\\1\end{bmatrix} + t\begin{bmatrix}1/2}\\4/3\\-3/4\end{bmatrix}[/tex]
[tex]r_x = \dfrac{1}{2}t\\r_y = -1 +\dfrac{4}{3}t\\r_z = 1=\dfrac{3}{4}t[/tex]
these are the parametric equations of the line PQ