Respuesta :
Answer:
The manufacturer must produce 35 units to break even.
Step-by-step explanation:
The break even function is when those functions, the revenue R(x) and the cost C(x), are equal. So
[tex]R(x) = C(x)[/tex]
[tex]200x - x^{2} = 35x + 4550[/tex]
[tex]x^{2} + 35x - 200x + 4550 = 0[/tex]
[tex]x^{2} - 165x + 4550 = 0[/tex]
So we have to solve this quadratic function to find the number of units that the manufacturer must produce to break even:
Solving a quadratic function:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = (x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]\bigtriangleup = b^{2} - 4a[/tex]
In this problem, we have that:
[tex]x^{2} - 165x + 4550 = 0[/tex]
So
[tex]a = 1, b = -165, c = 4550[/tex]
[tex]\bigtriangleup = (-165)^{2} - 4(1)(4550) = 9025[/tex]
[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a} = \frac{-(-165) + \sqrt{9025}}{2(1)} = 130[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a} = \frac{-(-165) - \sqrt{9025}}{2(1)} = 35[/tex]
The manufacturer produces between 0 and 100 units. So the answer is 35.
The manufacturer must produce 35 units to break even.