contestada

What is the magnitude of the velocity when the elastic potential energy is equal to the kinetic energy? (Assume that U=0 at equilibrium.)

Respuesta :

Answer:

Explanation:

General Equation of SHM is given by

[tex]x=A\cos \omega t[/tex]

[tex]v=-A\omega \sin \omega t[/tex]

where x=position of particle

A=maximum Amplitude

[tex]\omega =[/tex]angular frequency

t=time

At any time Total Energy is the sum of kinetic Energy and Elastic potential Energy i.e. [tex]\frac{1}{2}kA^2[/tex]

where k=spring constant

Potential Energy is given by [tex]U=\frac{1}{2}kx^2[/tex]

also it is given that Potential Energy(U) is equal to Kinetic Energy(K)

Total Energy[tex]=K+U[/tex]

Total[tex]=2U=2\times \frac{1}{2}kx^2[/tex]

[tex]\frac{1}{2}kA^2=2\times \frac{1}{2}kx^2[/tex]

[tex]x=\pm \frac{A}{\sqrt{2}}[/tex]

at [tex]x=\frac{A}{\sqrt{2}}[/tex]

velocity is [tex]v=\frac{A\omega}{\sqrt{2}}[/tex]

ACCESS MORE