Answer:
1410years
Explanation:
[tex]M_{R} =\frac{M_{O} }{2^{n} }[/tex] ..........................equ 1
[tex]n=\frac{t}{t_{1/2} }[/tex]
where [tex]M_{R}[/tex] = mass remaining
[tex]M_{O}[/tex] = Original mass.
t=time
[tex]t_{1/2} [/tex]= half life
[tex]M_{R} =12.5% of M_{O}[/tex]
[tex]M_{R} =0.125M_{O}[/tex]
Substitute [tex]M_{R} =0.125M_{O}[/tex] into equ 1
[tex]0.125M_{O}=\frac{M_{O} }{2^{n} }[/tex]
[tex]2^{n}=\frac{100}{12.5} \\2^{n}=8\\\\2^{n}=2^{3}[/tex]
n=3
[tex]n=\frac{t}{t_{1/2} }[/tex]
[tex]t=t_{1/2}*n[/tex]
t=470*3
t=1410years