Respuesta :

Answer:

[tex]\boxed{y=5(1.05)^t\to\:5\% \:rate \:of \:growth}[/tex]

[tex]\boxed{f(t)=50(.95)^t\to\:5\% \:rate \:of \:decay}[/tex]

[tex]\boxed{g(t)=50(1.5)^t\to\:50\% \:rate \:of \:growth}[/tex]

[tex]\boxed{y=5(.5)^t\to\:50\% \:rate \:of \:decay}[/tex]

Step-by-step explanation:

We can rewrite the given functions in the form [tex]f(x)=a(100\%+r\%)^x[/tex] to determine the rate of growth or [tex]f(x)=a(100\%-r\%)^x[/tex] to determine the rate of decay

[tex]y=5(1.05)^t=5(100\%+5\%)^t\to\:5\% \:rate \:of \:growth[/tex]

[tex]f(t)=50(.95)^t=50(100\%-5\%)^t\to\:5\% \:rate \:of \:decay[/tex]

[tex]g(t)=50(1.5)^t=50(100\%+50\%)^t\to\:50\% \:rate \:of \:growth[/tex]

[tex]y=5(.5)^t=5(100\%-50\%)^t\to\:50\% \:rate \:of \:decay[/tex]

ACCESS MORE