Respuesta :
Answer:
a) [tex]P(X\geq 3.5)=P(\frac{X-\mu}{\sigma}\geq \frac{3.5-\mu}{\sigma})=P(Z\geq \frac{3.5-5.0}{1.2})=P(Z\geq -1.25)[/tex]
And we can find this probability using the z table or excel
[tex]P(Z \geq <-1.25)=1-P(Z<-1.25)=1-0.10565=0.894 [/tex]
b) [tex]P(X\leq 6.0)=P(\frac{X-\mu}{\sigma}\leq \frac{6.0-\mu}{\sigma})=P(Z\leq \frac{6.0-5.0}{1.2})=P(Z\leq 0.833)[/tex]
And we can find this probability using the z table or excel:
[tex]P(Z \leq <0.833)=0.798 [/tex]
c) [tex]P(3.5<X<6)=P(\frac{3.5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{6-\mu}{\sigma})=P(\frac{3.5-5.0}{1.2}<Z<\frac{6-5.0}{1.2})=P(-1.25<z<0.833)[/tex]
And we can find this probability on this way:
[tex]P(-1.25<Z<0.833)=P(Z<0.833)-P(Z<-1.25)[/tex]
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
[tex]P(-1.25<z<0.833)=P(Z<0.833)-P(Z<-1.25)=0.798-0.106=0.692[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the interest rate of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(5.0,1.2)[/tex]
Where [tex]\mu=5.0[/tex] and [tex]\sigma=1.2[/tex]
We are interested on this probability
[tex]P(X\geq 3.5)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X\geq 3.5)=P(\frac{X-\mu}{\sigma}\geq \frac{3.5-\mu}{\sigma})=P(Z\geq \frac{3.5-5.0}{1.2})=P(Z\geq -1.25)[/tex]
And we can find this probability using the z table or excel
[tex]P(Z \geq <-1.25)=1-P(Z<-1.25)=1-0.10565=0.894 [/tex]
Part b
We are interested on this probability
[tex]P(X\leq 6.0)[/tex]
[tex]P(X\leq 6.0)=P(\frac{X-\mu}{\sigma}\leq \frac{6.0-\mu}{\sigma})=P(Z\leq \frac{6.0-5.0}{1.2})=P(Z\leq 0.833)[/tex]
And we can find this probability using the z table or excel:
[tex]P(Z \leq <0.833)=0.798 [/tex]
Part c
[tex]P(3.5<X<6)=P(\frac{3.5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{6-\mu}{\sigma})=P(\frac{3.5-5.0}{1.2}<Z<\frac{6-5.0}{1.2})=P(-1.25<z<0.833)[/tex]
And we can find this probability on this way:
[tex]P(-1.25<Z<0.833)=P(Z<0.833)-P(Z<-1.25)[/tex]
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
[tex]P(-1.25<z<0.833)=P(Z<0.833)-P(Z<-1.25)=0.798-0.106=0.692[/tex]