A right circular cylinder is inscribed in a sphere of radius r. Find the dimensions of such a cylinder with the largest possible volume (your answer may depend on r).

Respuesta :

Answer:

Largest volume in terms of r =  4r^3π/ 3√3 or you could write it as  4√3r^3π/9.

Step-by-step explanation:

Ver imagen PollyP52

The height and radius of the right circular cylinder inscribed in sphere are [tex]h = 0.716\cdot V_{c}^{1/3}[/tex] and [tex]r = \sqrt{R^{2}-0.128\cdot V_{c}^{1/3}}[/tex], respectively.

Geometrically speaking, the volumes of the sphere ([tex]V_{s}[/tex]) and the right circular cylinder ([tex]V_{c}[/tex]) are defined by the following formulae:

Sphere

[tex]V_{s} = \frac{4\pi}{3}\cdot R^{3}[/tex] (1)

Cylinder

[tex]V_{c} = \pi\cdot r^{2}\cdot h[/tex] (2)

Where:

  • [tex]R[/tex] - Radius of the sphere.
  • [tex]r[/tex] - Radius of the cylinder.
  • [tex]h[/tex] - Height of the cylinder.

In addition, we find the following relationship by the Pythagorean theorem:

[tex]R = \sqrt{r^{2}+\frac{h^{2}}{4} }[/tex] (3)

By (3) we clear [tex]r^{2}[/tex]:

[tex]r^{2} = R^{2}-\frac{h^{2}}{4}[/tex]

(3) in (2):

[tex]V_{c} = \pi \cdot \left(R^{2}-\frac{h^{2}}{4} \right)\cdot h[/tex]

[tex]V_{c} = \pi\cdot R^{2}\cdot h - \frac{\pi}{4}\cdot h^{3}[/tex] (4)

By (1):

[tex]R = \sqrt[3]{\frac{3\cdot V_{s}}{4\pi} }[/tex]

(1) in (4):

[tex]V_{c} = \pi\cdot \left(\frac{3\cdot V_{s}}{4\pi} \right)^{2/3}\cdot h -\frac{\pi}{4}\cdot h^{3}[/tex] (5)

Now we proceed to perform first and second derivative tests:

FDT

[tex]\pi\cdot \left(\frac{3\cdot V_{c}}{4\pi} \right)^{2/3}-\frac{3\pi}{4}\cdot h^{2} =0[/tex]

[tex]\left(\frac{3\cdot V_{c}}{4\pi} \right)^{2/3}= \frac{3}{4}\cdot h^{2}[/tex]

[tex]0.385\cdot V_{c}^{2/3} = 0.75\cdot h^{2}[/tex]

[tex]h = 0.716\cdot V_{c}^{1/3}[/tex] (6)

SDT

[tex]V''_{c} = -\frac{3\pi}{2}\cdot h[/tex] (7)

Since [tex]h > 0[/tex] and [tex]V_{c}'' < 0[/tex], the critical value is associated to the maximum volume of the cylinder.

The dimensions of the right circular cylinder are the following:

By (6):

[tex]h = 0.716\cdot V_{c}^{1/3}[/tex]

By (3):

[tex]r = \sqrt{R^{2}-0.25\cdot (0.716\cdot V_{c}^{1/3})^{2}}[/tex]

[tex]r = \sqrt{R^{2}-0.128\cdot V_{c}^{1/3}}[/tex]

The height and radius of the right circular cylinder inscribed in sphere are [tex]h = 0.716\cdot V_{c}^{1/3}[/tex] and [tex]r = \sqrt{R^{2}-0.128\cdot V_{c}^{1/3}}[/tex], respectively.

We kindly invite to check this question on optimization: https://brainly.com/question/12870574

Ver imagen xero099
ACCESS MORE