By what percent will a fraction change if its numerator is decreased by 50% and its denominator is decreased by 25%?
(It's not 33%, 1/3%, or -33% btw)

Respuesta :

Answer:

The fractional change is [tex]\frac{1}{3}[/tex] % .

Step-by-step explanation:

Given as :

The original fraction = [tex]\dfrac{x}{y}[/tex]

Where numerator = x

Denominator = y

According to question

The numerator decreased by 50%

Let The new numerator = x' = x - 50% of x

I,e x' = x ( 1 - [tex]\frac{50}{100}[/tex])

Or, x' = x ([tex]\frac{100-50}{100}[/tex])

Or, x' = [tex]\frac{50}{100}[/tex] x

or, x' = [tex]\dfrac{x}{2}[/tex]              .........A

Again

The new denominator = y' = y - 25% of y

i.e y' = y (1 - [tex]\frac{25}{100}[/tex])

Or, y' = y ([tex]\frac{100-25}{100}[/tex])

Or, y' = y ([tex]\frac{75}{100}[/tex])

Or, y' = [tex]\frac{3 y}{4}[/tex]              ............B

So, The new fraction = [tex]\frac{x'}{y'}[/tex] = [tex]\frac{\frac{x}{2}}{\frac{3 y}{4}}[/tex]

Or, [tex]\frac{x'}{y'}[/tex] = [tex]\frac{2 x}{3 y}[/tex]

So, The fractional change = [tex]\frac{1-\frac{2}{3} }{1}[/tex] × 100

Or, The fractional change = [tex]\frac{1}{3}[/tex]× 100

Hence, The fractional change is [tex]\frac{1}{3}[/tex] % . Answer

ACCESS MORE