With [tex]X,Y\sim\mathrm{Beta}(120,2020)[/tex], we have identical PDFs
[tex]P(X=x)=\dfrac{x^{119}(1-x)^{2019}}{B(120,2020)}[/tex]
for [tex]0<x<1[/tex], and 0 otherwise, where
[tex]B(a,b)=\dfrac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}[/tex]
Since [tex]X,Y[/tex] are independent, the joint PDF is
[tex]P(X=x,Y=y)=P(X=x)P(Y=y)=\dfrac{(xy)^{119}((1-x)(1-y))^{2019}}{B(120,2020)^2}[/tex]
for points [tex](x,y)[/tex] in the unit square, and 0 otherwise.
1. The distribution is continuous, so [tex]P(X=0.5)=\boxed0[/tex].
2. [tex]X+3<2Y[/tex] is the region in the [tex]x,y[/tex] plane contained within the unit square and above the line [tex]y=\frac{x+3}2[/tex]. This region is empty, because this line lies above the square altogether, so [tex]P(X+3<2Y)=\boxed0[/tex].
3. [tex]X>Y[/tex] is the region in the same square below the line [tex]y=x[/tex]. So we have
[tex]P(X>Y)=\displaystyle\int_0^1\int_0^xP(X=x,Y=y)\,\mathrm dy\,\mathrm dx=\boxed{\frac12}[/tex]