Let X and Y be two independent random variables following beta distributions Beta(120, 2020).
1. What's P(X = 0.5)?
2. What's P(X + 3 < 2Y)?
3. What's P(X > Y)?

Respuesta :

With [tex]X,Y\sim\mathrm{Beta}(120,2020)[/tex], we have identical PDFs

[tex]P(X=x)=\dfrac{x^{119}(1-x)^{2019}}{B(120,2020)}[/tex]

for [tex]0<x<1[/tex], and 0 otherwise, where

[tex]B(a,b)=\dfrac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}[/tex]

Since [tex]X,Y[/tex] are independent, the joint PDF is

[tex]P(X=x,Y=y)=P(X=x)P(Y=y)=\dfrac{(xy)^{119}((1-x)(1-y))^{2019}}{B(120,2020)^2}[/tex]

for points [tex](x,y)[/tex] in the unit square, and 0 otherwise.

1. The distribution is continuous, so [tex]P(X=0.5)=\boxed0[/tex].

2. [tex]X+3<2Y[/tex] is the region in the [tex]x,y[/tex] plane contained within the unit square and above the line [tex]y=\frac{x+3}2[/tex]. This region is empty, because this line lies above the square altogether, so [tex]P(X+3<2Y)=\boxed0[/tex].

3. [tex]X>Y[/tex] is the region in the same square below the line [tex]y=x[/tex]. So we have

[tex]P(X>Y)=\displaystyle\int_0^1\int_0^xP(X=x,Y=y)\,\mathrm dy\,\mathrm dx=\boxed{\frac12}[/tex]

ACCESS MORE