Respuesta :
Answer:
[tex]\dfrac{K_r}{K}=0.1[/tex]
Explanation:
M = Mass of cylinder
R = Radius
Moment of inertia is given by
[tex]I=0.1MR^2[/tex]
Velocity is given by
[tex]v=R\omega\\\Rightarrow \omega=\dfrac{v}{R}[/tex]
Rotational kinetic energy is given by
[tex]K_r=\dfrac{1}{2}I\omega^2\\\Rightarrow K_r=\dfrac{1}{2}\times 0.1MR^2\dfrac{v^2}{R^2}\\\Rightarrow K_r=\dfrac{1}{2}0.1Mv^2[/tex]
The linear kinetic energy is given by
[tex]K=\dfrac{1}{2}Mv^2[/tex]
The ratio would be
[tex]\dfrac{K_r}{K}=\dfrac{\dfrac{1}{2}0.1Mv^2}{\dfrac{1}{2}Mv^2}\\\Rightarrow \dfrac{K_r}{K}=0.1[/tex]
The ratio of the kinetic energies is [tex]\dfrac{K_r}{K}=0.1[/tex]
Answer:
- Ratio of rotational kinetic energy to its linear kinetic energy = [tex]1:10[/tex]
Explanation:
Given
moment of inertia,
[tex]I = 0.1 MR^2[/tex]
Rotational kinetic energy,
[tex]Rot KE = \frac{1}{2}*Iw^2[/tex]
where, [tex]v = Rw[/tex]
[tex]Rot KE = 0.5 * 0.1 MR^2 * w^2\\\\Rot KE = 0.05 *Mv^2[/tex]
[tex]linear KE = \frac{1}{2} Mv^2\\\\linear KE = 0.5Mv^2[/tex]
therefore ratio,
[tex]= 1:10[/tex]
For more information on this visit
https://brainly.com/question/23379286