Answer:
The atomic radius is [tex]1.238\times 10^{-8}cm[/tex]
.Explanation:
Formula used :
[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]
where,
[tex]\rho[/tex] = density
Z = number of atom in unit cell
M = atomic mass
[tex](N_{A})=6.022\times 10^{23}[/tex] = Avogadro's number
a = edge length of unit cell
We have :
M = 50.99 g/mol
a =?
Z = 2 ( BCC)
[tex]\rho =7.25 g/cm^3[/tex]
On substituting all the given values , we will get the value of 'a'.
[tex]7.25 g/cm3=\frac{2\times 50.99 g/mol}{6.022\times 10^{23} mol^{-1}\times (a)^{3}}[/tex]
[tex]a = 2.86\times 10^{-8} cm[/tex]
The unit cell edge length is [tex]4.3\times 10^{-8} m[/tex]
For BCC: radius is related to edge length by :
[tex]r=\frac{\sqrt{3}}{4}a[/tex]
r = 0.433a
[tex]r=0.433\times 2.86\times 10^{-8} cm=1.238\times 10^{-8} cm[/tex]
The atomic radius is [tex]1.238\times 10^{-8} cm[/tex].