Question:
For a metal that has the body-centered cubic crystal structure, calculate the atomic radius if the metal has a density of 7.25 g/cm3 and an atomic weight of 50.99 g/mol.

Atomic Radius
This problem is related to the concept of solid states. The smallest part of a crystal is the unit cell. This concept can explain the crystal structure of different compounds. The Atomic radius is proportional to the value of edge length of unit cell.

Respuesta :

Answer:

The atomic radius is [tex]1.238\times 10^{-8}cm[/tex]

.Explanation:

Formula used :  

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

where,

[tex]\rho[/tex] = density

Z = number of atom in unit cell

M = atomic mass

[tex](N_{A})=6.022\times 10^{23}[/tex] = Avogadro's number  

a = edge length of unit cell

We have :

M = 50.99 g/mol

a =?

Z = 2 ( BCC)

[tex]\rho =7.25 g/cm^3[/tex]

On substituting all the given values , we will get the value of 'a'.

[tex]7.25 g/cm3=\frac{2\times 50.99 g/mol}{6.022\times 10^{23} mol^{-1}\times (a)^{3}}[/tex]

[tex]a = 2.86\times 10^{-8} cm[/tex]

The unit cell edge length is [tex]4.3\times 10^{-8} m[/tex]

For BCC: radius is related to edge length by :

[tex]r=\frac{\sqrt{3}}{4}a[/tex]

r = 0.433a

[tex]r=0.433\times 2.86\times 10^{-8} cm=1.238\times 10^{-8} cm[/tex]

The atomic radius is [tex]1.238\times 10^{-8} cm[/tex].

ACCESS MORE