Answer:
a) E = 2482.90
b) 99% Confidence interval: (41510.1,46475.9)
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] =$43,993
Sample size, n = 90
Alpha, α = 0.051
Sample standard deviation, s = $9,144
a) The margin of error
Formula:
[tex]z_{critical}\text{ at}~\alpha_{0.01} = 2.576[/tex]
[tex]E =z_{critical}\times \displaystyle\frac{s}{\sqrt{n}}\\\\E = 2.576\times \frac{9144}{\sqrt{90}}\\\\E = 2482.90[/tex]
b) 99% Confidence interval:
[tex]\mu \pm z_{critical}\frac{\sigma}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]43993 \pm 2482.90 = (41510.1,46475.9)[/tex]