Answer:
a) [tex] P(X\leq 3) =0.0009119+0.00638+0.0223+0.0521=0.0818[/tex]
b) [tex] P(X \geq 2) = 1-P(X<2) = 1- [0.0009119+0.00638]=0.993[/tex]
c) [tex]P(X=5) =\frac{e^{-7} 7^5}{5!}=0.128[/tex]
Step-by-step explanation:
Let X the random variable that represent the number of customers that arrive in a given hour. We know that [tex]X \sim Poisson(\lambda)[/tex]
The probability mass function for the random variable is given by:
[tex]f(x)=\frac{e^{-\lambda} \lambda^x}{x!} , x=0,1,2,3,4,...[/tex]
And f(x)=0 for other case.
For this case we have [tex] \lambda= 7 \frac{customers}{hour}[/tex]
Part a
No more than 3 means:
[tex] P(X\leq 3) = P(X=0) +P(X=1) +P(X=2) +P(X=3)[/tex]
And if we find the individual probabilites we got:
[tex]P(X=0) =\frac{e^{-7} 7^0}{0!}=0.0009119[/tex]
[tex]P(X=1) =\frac{e^{-7} 7^1}{1!}=0.00638[/tex]
[tex]P(X=2) =\frac{e^{-7} 7^2}{2!}=0.0223[/tex]
[tex]P(X=3) =\frac{e^{-7} 7^3}{3!}=0.0521[/tex]
So then if we replace we got:
[tex] P(X\leq 3) =0.0009119+0.00638+0.0223+0.0521=0.0818[/tex]
Part b
We want the probability that at least two so we can do this:
[tex] P(X \geq 2) = 1-P(X<2) = 1- [P(X=0) +P(X=1)][/tex]
The last step by the complement rule.
[tex]P(X=0) =\frac{e^{-7} 7^0}{0!}=0.0009119[/tex]
[tex]P(X=1) =\frac{e^{-7} 7^1}{1!}=0.00638[/tex]
[tex] P(X \geq 2) = 1-P(X<2) = 1- [0.0009119+0.00638]=0.993[/tex]
Part c
[tex]P(X=5) =\frac{e^{-7} 7^5}{5!}=0.128[/tex]