Answer: i) f(-9)= 66
ii) [tex]f(x+1)=x^2+4x+6[/tex].
iii) [tex]f(-x)=x^2-2x+3[/tex]
Step-by-step explanation:
The given function : [tex]f(x)=x^2+2x+3[/tex].
i) For f(-9) , the independent variable is x= -9.
Put x= -9 in given function , we get
[tex]f(-9)=(-9)^2+2(-9)+3[/tex]
[tex]=81-18+3=66[/tex]
Thus , f(-9)= 66
ii) For f(x+1) , the independent variable is x= x+1.
Replace x by x+1 in given function , we get
[tex]f(x+1)=(x+1)^2+2(x+1)+3[/tex].
[tex]=(x^2+1+2x)+2x+2+3[/tex] [tex][\because\ (a+b)^2=(a^2+b^2+2ab)][/tex]
[tex]=x^2+1+2x+2x+5[/tex]
[tex]=x^2+4x+6[/tex]
Thus , [tex]f(x+1)=x^2+4x+6[/tex].
iii)For f(-x) , the independent variable is x=-x.
Replace x by -x in given function , we get
[tex]f(-x)=(-x)^2+2(-x)+3[/tex].
[tex]=x^2-2x+3[/tex] [∵ (+)(-)=(-)]
Thus , [tex]f(-x)=x^2-2x+3[/tex]