Respuesta :
Answer:
Step-by-step explanation:
We need to find magnitude of acceleration due to gravity on earth surface due to moon
[tex]g_{m}=\frac{GM}{R^2}[/tex]
where M=mass of moon
R=distance between moon and earth
G=gravitational constant
[tex]G=6.673\times 10^{-11}\ N-m^2/kg^2[/tex]
[tex]M=7.35\times 10^{22}\ kg[/tex]
[tex]R=3.84\times 10^8\ m[/tex]
[tex]a_m=\frac{6.673\times 10^{-11}\times 7.35\times 10^{22}}{(3.84\times 10^8)^2}[/tex]
[tex]a_m=3.33\times 10^{-5}\ m/s^2[/tex]
The gravitational field is:
F = 3.3*10^(-5) m/s^2
How to get the gravitational field?
The gravitational field at a distance R of an object of mass M is:
[tex]F = \frac{G*M}{R^2}[/tex]
Where G is the gravitational constant.
G = 6.67*10^(-11) m^3/kg*s^2
The mass of the moon is:
M = 7.35*10^22 kg.
The average distance between the moon and the Earth is:
R = 384,400,000 m
Replacing that in the gravitational field equation we get:
[tex]F = \frac{6.67*10^{-11} m^3/kg*s^2*7.35*10^{22} kg}{(384,400,000 m)^2}\\\\F = 3.3*10^{-5} m/s^2[/tex]
If you want to learn more about gravity, you can read:
https://brainly.com/question/4208016