Answer:
112.5 min
Explanation:
[tex]L_0[/tex] = Original length = 1 lh = [tex]1c[/tex]
Length contraction
[tex]L=L_0(\sqrt{1-\dfrac{u^2}{c^2}})[/tex]
The difference in time is given by
[tex]\Delta t=\dfrac{L}{c-u}-\dfrac{L}{c+u}\\\Rightarrow \Delta t=\dfrac{L(c+u)-L(c-u)}{c^2-u^2}\\\Rightarrow \Delta t=\dfrac{L(c+u-c+u)}{c^2-u^2}\\\Rightarrow \Delta t=\dfrac{2Lu}{c^2-u^2}[/tex]
[tex]L=L_0\sqrt{1-\dfrac{u^2}{c^2}}[/tex]
[tex]\Delta t=\dfrac{2uL_0\sqrt{1-\dfrac{u^2}{c^2}}}{c^2-u^2}\\\Rightarrow \Delta t=\dfrac{2uL_0\sqrt{1-\dfrac{u^2}{c^2}}}{(1-\dfrac{u^2}{c^2})c^2}\\\Rightarrow \Delta t=\dfrac{2\times 0.6c 1c\sqrt{1-\dfrac{0.6^2c^2}{c^2}}}{(1-\dfrac{0.6^2c^2}{c^2})c^2}\\\Rightarrow \Delta t=1.5\ hr[/tex]
[tex]1.5\times \dfrac{60}{\sqrt{1-\dfrac{0.6^2c^2}{c^2}}}=112.5\ min[/tex]
[tex]1.5\times \dfrac{60}{\sqrt(1-0.36)}\\ =1.5 \times \dfrac{60}{\sqrt{0.64}}\\ =1.5\times \dfrac{60}{0.8}\\ =\dfrac{90}{0.8}\\ =112.5\ minutes[/tex]
The time taken is 112.5 min