Answer:
219.3m, S24.2W
Step-by-step explanation:
The attached diagram shows the representation of the movement.
using Cosine rule to determine the distance from the starting point we have
[tex]C^{2}=a^{2}+b^{2}-2abcosC\\C^{2}=200^{2}+90^{2}-(2*200*90)cos90\\C^{2}=40000+8100-(36000)*0\\C^{2}=48100\\C=\sqrt{48100}\\C=219.3m\\[/tex]
Hence the distance from her starting point is 219.3m
To determine her bearing from the starting point, we first solve for the angle y in the diagram using sine rule
[tex]\frac{c}{sin90}=\frac{200}{siny}\\ \frac{219.3}{sin90}=\frac{200}{siny}\\ siny =0.911992\\y=sin^{-1}(0.911992)\\y=65.8^{0}\\[/tex]
[tex]90-65.8=24.2^{0}\\[/tex]
Hence her bearing from the starting point is S24.2W