Answer:
Explanation:
Given
height of bridge is [tex]=50\ m[/tex]
First Boat is at an angle of [tex]20^{\circ}[/tex]w.r.t to x axis
Second boat is at an angle of [tex]60^{\circ}[/tex] w.r.t to x axis
from Diagram
In triangle ABO
[tex]\tan (40)=\frac{h}{r_1}[/tex]
[tex]r_1=\frac{h}{\tan 40}=59.58\ m[/tex]
In triangle ACO
[tex]r_2=\frac{h}{\tan 30}=86.602\ m[/tex]
where [tex]r_1[/tex] and [tex]r_2[/tex] are the distance of boat from origin O
Position vector of boat 1 w.r.t origin is
[tex]\vec{x_1}=59.58\left ( -\cos (20)\hat{i}-\sin (20)\hat{j}\right )[/tex]
Position vector of boat 2 w.r.t origin is
[tex]\vec{x_2}=86.602\left ( \cos (60)\hat{i}-\sin (60)\hat{j}\right )[/tex]
Position of [tex]\vec{x_1} w.r.t to \vec{x_2}[/tex]
[tex]\vec{x_{12}}=59.58\left ( -\cos (20)\hat{i}-\sin (20)\hat{j}\right )-86.602\left ( \cos (60)\hat{i}-\sin (60)\hat{j}\right )[/tex]
[tex]\vec{x_{12}}=-99.28\hat{i}+45.209\hat{j}[/tex]
Distance between them is [tex]|\vec{x_{12}}|=\sqrt{(-99.28)^2+(45.209)^2}[/tex]
[tex]|\vec{x_{12}}|=109.089\ m[/tex]