Respuesta :

Answer:

The smallest model - bottom right - in the question diagram represents [tex]\sqrt[3]{64}=4[/tex].

Step-by-step explanation:

Considering the radical expression

[tex]\sqrt[3]{64}[/tex]

Lets simply this radical expression first

As

[tex]\sqrt[3]{64}[/tex]

[tex]\mathrm{Factor\:the\:number:\:}\:64=4^3[/tex]

[tex]=\sqrt[3]{4^3}[/tex]

[tex]\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a,\:\quad \:a\ge 0[/tex]

[tex]\sqrt[3]{4^3}=4[/tex]

      [tex]=4[/tex]

Therefore, [tex]\sqrt[3]{64}=4[/tex]

Now, as we can determine that [tex]\sqrt[3]{64}=4[/tex]. So, the smallest model in the question diagram represents [tex]\sqrt[3]{64}=4[/tex] as each face of the cube of the smallest model in the diagram - bottom right - has 4 squares.

Therefore, the smallest model - bottom right - in the question diagram represents [tex]\sqrt[3]{64}=4[/tex].

Keywords: square cube root, radical expression

Learn more about radical expression from brainly.com/question/13984232

#learnwithBrainly

ACCESS MORE