Write N as a discrete exponential function of t of the form N(t)=A(1+r)t. (HINT: You will need to find (1+r), where r is the rate. Use N(11)=130 and the initial value N(0)=84 to find it.)

Respuesta :

Answer:

[tex]N(t)=84(1+0.0405)^t[/tex].

Step-by-step explanation:

We have been given that [tex]N(11)=130[/tex] and [tex]N(0)=84[/tex]. We are asked to write N as a discrete exponential function of t of the form [tex]N(t)=A(1+r)^t[/tex].

Using our given information, we can set an equation as:

[tex]N(0)=A(1+r)^0[/tex]

[tex]84=A*1[/tex]

[tex]84=A[/tex]

Using our given information, we will get:

[tex]N(11)=A(1+r)^{11}[/tex]

Substitute the given values:

[tex]130=84(1+r)^{11}[/tex]

[tex]\frac{130}{84}=\frac{84(1+r)^{11}}{84}[/tex]

[tex]1.5476190476190476=(1+r)^{11}[/tex]

Switch sides:

[tex](1+r)^{11}=1.5476190476190476[/tex]

Take 11th root of both sides:

[tex]\sqrt[11]{(1+r)^{11}}=\sqrt[11]{1.5476190476190476}[/tex]

[tex]1+r=1.04050024747304[/tex]

[tex]r=1.04050024747304-1[/tex]

[tex]r=0.04050024747304[/tex]

[tex]r\approx 0.0405[/tex]

Therefore, our required function would be [tex]N(t)=84(1+0.0405)^t[/tex].

ACCESS MORE