Suppose the magnitude of the proton charge differs from the magnitude of the electron charge by a mere 1 part in 109

Part A
What would be the force between two 1.9-mm-diameter copper spheres 1.4cm apart? Assume that each copper atom has an equal number of electrons and protons.

Part B
Would this amount of force be detectable?
a. Yes
b. No

Respuesta :

Answer:

 A) F = 1.09 10 5 N, b) Yes  

Explanation:

Part A

For this exercise we need the number of free electrons in copper, as the valence of copper +1 there is a free electron for each atom. Let's use the concept of density to find the mass of copper in the sphere

               ρ = m / V

               .m = ρ V = ρ 4/3 π r³

The radius is half the diameter

               r = 1.9 10⁻² / 2 = 0.95 10⁻² m

               ρ = 8960 kg / m3

               m = 8960 4/3 π (0.95 10⁻²)³

               m = 3.2179 10⁻² kg

The molecular weight of copper is 63,546 g / mol which has 6,022 10²³ atoms

With this we can use a rule of proportions to enter the number of atom is this mass

             #_atom = 6.022 10²³ 3.2179 10⁻² / 63.546 10⁻³

             #_atom = 3,049 10²³

Therefore there is the same number of electrons, as they indicate that the charge of the protone and the electon differs by 1/10⁹ the total charge for each spherical is

               q = e / 10⁹    #_atom

               q = e / 10⁹    3,049 1023

               q = 3,049 10⁴  (-1.6 10⁻¹⁹)

               q = -4,878 10-5 C

Electric force is

             F = k q₁q₂ / r²

             F = k q² / r²

             

Let's calculate

             F = 8.99 10⁹ (4.878 10⁻⁵)²2 / (1.4 10⁻²)²

              F = 1.09 10 5 N

This is a force of repulsion.

Part B

 The magnitude of this force is  in very easy to detect

Otras preguntas