Answer:
A) The area of concrete is 141.546 inĀ².
B) The stress in the steel bars is 4Kpsi.
C) The stress in the concrete is 566.4psi.
Explanation:
We can consider the concrete column with the 8 iron bars as a composite material with long fiber parallel to the load. The concrete act as the matrix of the composite. The iron bars act as reinforcement.
The total area of the column is:
[tex]A_c=l\cdot l=12in\cdot12in=144in^2[/tex]
The total area of the reinforcement is:
[tex]A_f=n_f\cdot\pi\frac{D^2}{4}=2.454in^2[/tex]
Therefore the total area of the matrix (the concrete) is:
[tex]A_c=A_m+A_f \rightarrow A_m=A_c-A_f=141.546in^2[/tex]
If we consider this material as a long fiber composite, the matrix volume and fiber volume can be obtained as:
[tex]v_f=\frac{A_f}{A_c}[/tex]
[tex]v_m=\frac{A_m}{A_c}[/tex]
The stress in the material applied longitudinally to the fibers is:
[tex]\sigma_c=v_f\sigma_f+v_m\sigma_m[/tex]
But in this case [tex]\epsilon_c=\epsilon_m=\epsilon_f=\epsilon[/tex], Therefore:
[tex]\sigma_c/\epsilon=v_f\sigma_f/\epsilon+v_m\sigma_m/\epsilon[/tex]
[tex]E_c=v_fE_f+v_mE_m=4.5233\cdot10^{6}psi[/tex]
We can now calculate the strain of the composite:
[tex]\sigma_c=\frac{F}{A_c}=\epsilon E_c \rightarrow \epsilon=\frac{E_cA_c}{F}=1.3817\cdot10^{-4}[/tex]
With the strain we can calculate the stress of the iron bars and the concrete with young's equation:
[tex]\sigma_f=E_f\epsilon=4Kpsi[/tex]
[tex]\sigma_m=E_m\epsilon=566.467psi[/tex]