A projectile is fired vertically upward from the surface of planet Moorun of mass 2 à 10^24 kg and radius 7 à 10^6 m. If this projectile is to rise to a maximum height above the surface of Moorun equal to 6 à 10^6 m, what must be the initial speed of the projectile? The universal gravitational constant is 6.67259 à 10^â11 N · m2 /kg^2 . Answer in units of km/s.

Respuesta :

To solve this problem we will apply the principle of energy conservation. Here we have that the gravitational potential energy must be equal to the kinetic energy of the body. So,

[tex]PE = KE[/tex]

[tex]\frac{GMm}{R} = \frac{1}{2} mv^2[/tex]

Here,

m = mass of projectile

G = Gravitational Universal constant

M = Mass of the planet

R = Total height from center of mass of the planet

v = Velocity

Rearraning to find the velocity we have,

[tex]\frac{GM}{R} = \frac{1}{2} v^2[/tex]

[tex]v = \sqrt{2\frac{GM}{R}}[/tex]

Our values are given as,

[tex]M = 2*10^{24} kg[/tex]

[tex]r = 7*10^6 m[/tex]

[tex]h = 6*10^6 m[/tex]

[tex]R = h+r = 13*10^6m[/tex]

[tex]G = 6.67259*10^{-11} N\cdot m^2/kg^2[/tex]

Replacing we have,

[tex]v = \sqrt{2\frac{(6.67259*10^{-11})(2*10^{24})}{13*10^6}}[/tex]

[tex]v = 4531.12m/s[/tex]

Therefore the initial speed of the projectile must be 4531.12m/s

ACCESS MORE