To solve this problem we will apply the principle of energy conservation. Here we have that the gravitational potential energy must be equal to the kinetic energy of the body. So,
[tex]PE = KE[/tex]
[tex]\frac{GMm}{R} = \frac{1}{2} mv^2[/tex]
Here,
m = mass of projectile
G = Gravitational Universal constant
M = Mass of the planet
R = Total height from center of mass of the planet
v = Velocity
Rearraning to find the velocity we have,
[tex]\frac{GM}{R} = \frac{1}{2} v^2[/tex]
[tex]v = \sqrt{2\frac{GM}{R}}[/tex]
Our values are given as,
[tex]M = 2*10^{24} kg[/tex]
[tex]r = 7*10^6 m[/tex]
[tex]h = 6*10^6 m[/tex]
[tex]R = h+r = 13*10^6m[/tex]
[tex]G = 6.67259*10^{-11} N\cdot m^2/kg^2[/tex]
Replacing we have,
[tex]v = \sqrt{2\frac{(6.67259*10^{-11})(2*10^{24})}{13*10^6}}[/tex]
[tex]v = 4531.12m/s[/tex]
Therefore the initial speed of the projectile must be 4531.12m/s