Respuesta :

Answer:

  • The simplified form of [tex]\left(2a\right)^{-\frac{1}{2}}[/tex]  is  [tex]\frac{1}{2^{\frac{1}{2}}a^{\frac{1}{2}}}[/tex].
  • In other words:  [tex]\left(2a\right)^{-\frac{1}{2}} =\frac{1}{2^{\frac{1}{2}}a^{\frac{1}{2}}}[/tex]

Step-by-step explanation:

From your problem statement, it seems you are asking to simplify the expression 2a with exponent negative 1 over 2.

So,

Considering the expression

[tex]\left(2a\right)^{-\frac{1}{2}}[/tex]

Lets simplify step by step

So,

[tex]\left(2a\right)^{-\frac{1}{2}}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\frac{1}{a^b}[/tex]

[tex]\left(2a\right)^{-\frac{1}{2}}=\frac{1}{\left(2a\right)^{\frac{1}{2}}}[/tex]

[tex]=\frac{1}{\left(2a\right)^{\frac{1}{2}}}.....[A][/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \left(a\cdot \:b\right)^n=a^nb^n[/tex] on [tex]\left(2a\right)^{\frac{1}{2}}[/tex]

[tex]\left(2a\right)^{\frac{1}{2}}=2^{\frac{1}{2}}a^{\frac{1}{2}}[/tex]

So putting [tex]\left(2a\right)^{\frac{1}{2}}=2^{\frac{1}{2}}a^{\frac{1}{2}}[/tex] in equation [A]

[tex]=\frac{1}{\left(2a\right)^{\frac{1}{2}}}.....[A][/tex]

[tex]=\frac{1}{2^{\frac{1}{2}}a^{\frac{1}{2}}}[/tex]       ∵ [tex]\left(2a\right)^{\frac{1}{2}}=2^{\frac{1}{2}}a^{\frac{1}{2}}[/tex]

Therefore, the simplified form of [tex]\left(2a\right)^{-\frac{1}{2}}[/tex]  is  [tex]\frac{1}{2^{\frac{1}{2}}a^{\frac{1}{2}}}[/tex]

  • In other words:  [tex]\left(2a\right)^{-\frac{1}{2}} =\frac{1}{2^{\frac{1}{2}}a^{\frac{1}{2}}}[/tex]

Keywords: expression, simplification

Learn more about simplification of expression from brainly.com/question/13223583

#learnwithBrainly

ACCESS MORE